Сентябрь 2019
Пн Вт Ср Чт Пт Сб Вс
26 27 28 29 30 31 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 1 2 3 4 5 6

Наука

Гелий 3 - мифическое топливо будущего

Наверное мало чего в области термоядерной энергетики окружено мифами, как Гелий 3. В 80х-90х он был активно популяризирован, как топливо, которое решит все проблемы управляемого термоядерного синтеза, а так же как один из поводов выбраться с Земли (т.к. на земле его буквально считанные сотни килограмм, а на луне миллиард тонн) и заняться, наконец, освоением солнечной системы. Все это базируется на очень странных представлениях о возможностях, проблемах и потребностях несуществующей сегодня термоядерной энергетики, о чем мы и поговорим.

Гелий 3 - мифическое топливо будущего


Машина для добычи гелия3 на луне уже готова, дело за малым - найти ему применение.

Гелий 3 - мифическое топливо будущего

 О добыче Гелия-3 на Луне

Гелий 3 - мифическое топливо будущего


Китай планирует развернуть на Луне фабрики. Только производить на них будут не одежду и электронику, а совсем необычную, для стереотипного представления о Китае, продукцию. Речь идет об уникальном веществе, название которого - гелий-3. Этот удивительный материал, является изотопом хорошо известного всем газа – гелия, которым заправляют воздушные шары.

Гелий 3 - мифическое топливо будущего


Сам гелий–3 обладает огромным энергетическим потенциалом - он является идеальным горючим для будущих термоядерных реакторов. Имеющиеся на Луне запасы этой материи могут обеспечить землян энергией на 10 тысяч лет вперед.

Гелий 3 - мифическое топливо будущего


В настоящее время изотоп гелий-3 на Земле добывают в очень небольших количествах, исчисляемых несколькими десятками граммов. Ученые подсчитали ,приблизительную тоимость одной тонны гелия-3 - это 1 000 000 000 (млрд) $ !

Для обеспечения энергией населения нашей планеты необходимо всего 25 тонн вещества. Для примера, только США в год использует энергоресурсов на сумму 40 миллиардов. Выгода гелия 3 - очевидна.

Гелий 3 - мифическое топливо будущего


Сегодня Китай является единственной страной мира, располагающей действующей лунной программой. Более того, он целеустремленно продвигается по пути высадки на лунной поверхности своих астронавтов и создания там постоянной колонии.

Следует отметить, что 1962 году Китай наряду с 102 другими странами мира подписал «Договор о деятельности в космическом пространстве ООН», который запрещает эксплуатацию небесных тел суверенными государствами. Однако многие международные эксперты отмечают, что этот документ написан слишком двусмысленным языком, чтобы исключить коммерческую эксплуатацию космических ресурсов.


Гелий 3 - мифическое топливо будущего


Когда говорят про гелий3, то имеют в виду реакции термоядерного слияния He3 + D -> He4 + H или He3 + He3 -> 2He4 + 2H. По сравнению с классической D + T -> He4 +n в продуктах реакции нет нейтронов, а значит нет активации сверхэнергичными нейтронами конструкции термоядерного реактора. Кроме того, проблемой считается тот факт, что нейтроны из “классики” уносят из плазмы 80% энергии, поэтому баланс самонагрева наступает при бОльшей температуре. Еще одним записываемым гелиевому варианту преимуществом является то, что электроэнергию можно снимать прямо с заряженных частиц реакции, а не нагревом нейтронами воды - как в старых угольных электростациях.

Так вот, все это - неправда, точнее очень маленькая часть правды.

Гелий 3 - мифическое топливо будущего


Начнем с того, что при одинаковой плотности плазмы и оптимальной температуре реакция He3 + D даст в 40 раз меньше энерговыделение на кубометр рабочей плазмы. При этом температура, нужная для хотя бы 40 кратного разрыва будет в 10 раз выше - 100 кЭв (или один миллиард градусов) против 10 для D +T. Сама по себе, такая температура вполне достижима (рекорд токамаков на сегодня - 50 кЭв, всего в два раза хуже), но что бы завязать энергобаланс (скорость остывания VS скорость нагрева в т.ч. самонагрева) нам нужно поднять в 50 раз энерговыделение с кубометра He3 +D реакции, что можно сделать только подняв плотность в те же в 50 раз. В сочетании с выросшей в 10 раз температурой это дает увеличение давления плазмы в 500 раз - с 3-5 атм до 1500-2500 атм, и такое же увеличение противодавления, что бы эту плазму удержать.

Гелий 3 - мифическое топливо будущего

Зато картинки вдохновляющие.

Гелий 3 - мифическое топливо будущего

Помните, я писал (ссылка на ЖЖ автора оригинала), что магниты тороидального поля ИТЭР, которые создают противодавление плазме - абсолютно рекордные изделия, единственные по параметрам в мире? Так вот, поклонники He3 предлагают сделать магниты в 500 раз мощнее.
Ок, забудем про сложности, может преимущества этой реакции их окупают?

Гелий 3 - мифическое топливо будущего


Разные термоядерные реакции, которые применимы для УТС. He3 + D дает слегка больше энергии, чем D + T, но на преодалевание кулоновского отталкивания тратится очень много энергии (заряд 3 а не 2), поэтому реакция идет медленно.

Начнем с нейтронов. Нейтроны в промышленном реакторе будут представлять собой серьезную проблему, повреждать материалы корпуса, греть все элементы обращенные к плазме настолько, что их придется охлаждать приличным расходом воды. А главное - активация материалов нейтронами приведут к тому, что и через 10 лет после остановки термоядерного реактора у нем будет тысячи тонн радиоактивных конструкций, которые невозможно разбирать руками, и которые будут вылеживаться уже в хранилище сотни и тысячи лет. Избавление от нейтронов очевидно бы облегчило задачу создания термоядерной электростанции.

Одна маленькая проблемка - нейтроны от He3 + D реакции будут. Они будут рождаться в ходе паразитной реакции D + D ->T + n, а получившийся тритий тут же будет сгорать и давать еще один нейтрон. С учетом того, что дотянуться до зажигания гелия3 крайне непросто, при минимальных параметрах конфаймента (конфаймент - фактически теплоизоляция плазмы магнитным полем), при которых он будет гореть, в виде нейтронов будет выделятся 2-3% энергии термоядерной реакции. Да, это в 25-40 раз меньше, чем в случае D + T, но это в ваттах, а в штуках нейтронов разница составит всего 4 раза, они просто гораздо менее энергичные, чем от D + T. Радиоактивных изотопов в стенах реактора в итоге будет где-то в 10 раз меньше, но сути это не меняет - ядерный объект, с дорогой, сложной и контролируемой атомнадзором эксплуатацией.

Гелий 3 - мифическое топливо будущего


Скорости ТЯ реакций в зависимости от температуры. В максимуме, при 1 миллиарде градусов, D + He3 обгоняет паразитную D +D всего в 3,6 раза, отсюда нейтроны.

Гелий 3 - мифическое топливо будущего


Доля энергии, уносимая нейтронами. Если добавить побольше He3 в реактор, то можно снизить ее до 1%, но это еще ужесточит условия зажигания.

Ок, ну а как насчет прямого преобразования энергии заряженных частиц в электричество? Опыты показывают, что поток ионов с энергией 100 кЭв можно преобразовать в электричество с 80% кпд. У нас же тут нет нейтронов…. ну в смысле они не уносят всю энергию, которую мы можем получить только в виде тепла - давайте избавимся от паровых турбин и поставим ионные коллекторы?

Да, технологии прямого преобразования энергии плазмы в электроэнергию есть, они активно исследовались в 60х-70х, и показали кпд в районе 50-60% (не 80, надо заметить). Однако эта идея слабо применима как в D +T реакторах, так и в He3 +D. Почему это так, помогает понять вот эта картинка.

Гелий 3 - мифическое топливо будущего


На ней показаны потери тепла плазмой по разным каналам. Сравните D+T и D + He3. Transport - это то, что можно использовать для прямого преобразования энергии плазмы в электроэнергию. Если в D + T варианте у нас все забирают мерзкие нейтроны, то в случае He3 + D все забирает электромагнитное излучение плазмы, в основном синхротронное и рентгеновское тормозное (на картинке Bremsstrahlung). Ситуация практически симметричная, все равно надо отводить тепло от стенок и все равно прямым преобразованием мы не может вытащить больше 10-15% энергии термоядерного горения, а остальное - по старинке, через паросиловую машину.

Гелий 3 - мифическое топливо будущего


Иллюстрация в исследовании по прямому преобразованию энергии плазмы на крупнейшей открытой ловушке Gamma-10 в Японии.

Кроме теоретических ограничений есть и инженерные - в мире (в т.ч. в СССР) были потрачены гигантские усилия на создание установок прямого преобразования энергии плазмы в электричество для обычных электростанций, что позволяло поднять кпд с 35% до 55%. В основном на базе МГД-генераторов. 30 лет работы больших коллективов закончились пшиком - ресурс установки составлял сотни часов, когда энергетикам нужны тысячи и десятки тысяч. Гигантское количество ресурсов, потраченное на эту технологию привело, в частности, к тому, что наша страна отстала в производстве энергетических газовых турбин и установок парогазотурбинного цикла (которые дают ровно такое же повышение кпд - с 35 до 55%!).

Гелий 3 - мифическое топливо будущего


Кстати, мощные сверхпроводящие магниты нужны и для МГД-генераторов. Здесь показаны СП магниты для 30 мегаваттного МГД-генератора.

Но вернемся к He3. Резюме этого разрекламированного изотопа такое - если бы параметры плотности и температуры плазмы нам бы давались бесплатно, то He3 обещал бы некоторые преимущества при некоторых недостатка по сравнению с D + T. Примерно как дизель и бензиновый двигатель. Однако, по моим статьям вы можете видеть, НАСКОЛЬКО не бесплатно даются эти самые параметры плотности и температуры. Никакие гипотетические плюсы He3 не окупают даже близко необходимости в 500 раз поднимать давление плазмы. И, думается, гипотетические магнитные ловушки, которые нам обещают (но пока не сделали) на смену “изжившим” себя токамакам этой ситуации не поменяют.

Гелий 3 - мифическое топливо будущего



Да простит меня Комунист, аминь

Гелий 3 - мифическое топливо будущего



Источник Источник
© 2012 FUN-SPACE.ru. Все права защищены.
Создание сайтов Санкт-Петербург